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Pie charts are effective when displaying the relative frequencies of a small number of 
categories (a bar chart is a better option for a large number of categories). Bar charts also are 
very powerful for comparing the distributions of two or more samples – see below. Note, 
whether the bars are vertical or horizontal depends on which is felt most visually informative. 

 

Note the gap between the variable categories and display of frequency of clasts on the bar 
chart. 

Let us now consider an example with a continuous variable. The table below shows 50 
Schmidt hammer hardness values (a proxy for uniaxial compressive strength) obtained from 
Triassic sandstones at Church Quarry, Alderley Edge, Cheshire. Although the practicalities 
of resolution preclude the Schmidt hammer measurement being truly continuous (a problem 
with all measurements) the value of Schmidt hammer hardness can range in a continuous 
scale from 0 to 100 and is not made up of discrete steps. 
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Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

1 41 11 43 21 39 31 34 41 32 
2 38 12 33 22 33 32 37 42 38 
3 44 13 32 23 43 33 36 43 36 
4 38 14 36 24 34 34 38 44 39 
5 31 15 46 25 36 35 36 45 40 
6 37 16 35 26 36 36 40 46 38 
7 30 17 33 27 34 37 36 47 36 
8 29 18 36 28 41 38 38 48 41 
9 40 19 31 29 38 39 37 49 42 
10 32 20 33 30 34 40 35 50 49 
 

The first useful step in the interpretation of this data is to produce a frequency table by 
dividing the data into class intervals – customarily of the same width – to provide a count of 
the frequencies of the classes. This will then enable a visualisation of the data as a 
histogram (a graphical representation of a frequency table) and a cumulative frequency 
graph if required. A crude rule of thumb regarding the size of the classes is that there should 
be at least six and the number of classes should equal the square root of the number of 
points in the data set (variations on this theme exist) but common sense must be used and 
trial and error is advised. In this example there are 50 data values and therefore 7 class 
intervals seems initially prudent. 

Schmidt hammer 
hardness (SHH) class 

Frequency Cumulative 
frequency, % 

1 28<SHH≤31 4 8 
2 31<SHH≤34 11 30 
3 34<SHH≤37 14 58 
4 37<SHH≤40 12 82 
5 40<SHH≤43 6 94 
6 43<SHH≤46 2 98 
7 46<SHH≤49 1 100 
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Class intervals need not be of equal width. Indeed, when data are grouped together 
narrower class intervals may be prudent and conversely where the data are spread out wider 
class intervals could be used. Additionally, wider class intervals should be encouraged to 
avoid gaps in data. To draw a histogram for unequal class intervals, the height of the 
rectangles must be adjusted so that the area of the rectangle is proportional to the frequency. 
The height of the rectangle, called the frequency density, is found by dividing the frequency 
by the class width. It should be recognised here that statisticians would consider that a 
histogram should always be a plot of frequency density versus class interval. The advantage 
of this approach is that it enables the probability of a particular event occurring to be 
determined. 

To demonstrate the construction of a variable class width histogram, the 50 data values 
collected at Alderley Edge have been regrouped again into 7 classes but this time with 
differing class intervals. 

 

 

Some ways in which patterns in univariate quantitative data can be described include:  

• Measures of central tendency (mean, mode, median)  
• Measures of dispersion (maximum, minimum, range, quartiles (including the 

interquartile range) variance and standard deviation) 
• Measures of shape (coefficient of skewness) 

Schmidt hammer 
hardness (SHH) class 

frequency class width 
 widthclass

frequencydensityfrequency =  

1 28<SHH≤31 4 3 1.3. 
2 31<SHH≤33 7 2 3.5 
3 33<SHH≤35 6 2 3 
4 35<SHH≤37 12 2 6 
5 37<SHH≤39 9 2 4.5 
6 39<SHH≤43 9 4 2.25 
7 43<SHH≤49 3 6 0.5 
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Measures of central tendency 

Mean: To find the mean, add up the values in the data set and then divide by the number of 
values that were added, i.e.  

n
x...xx

x n+++
= 21

 

37
50

49.....3841
=

+++
=  

 

Mode: The mode of a sample is the most frequently occurring value. When data is grouped 
into classes, the modal class is the class containing the greatest number of values. Mode 
helps identify the most common or frequent occurrence in a dataset. It is possible to have 
two modes (bimodal), three modes (trimodal) or more modes within larger sets of numbers. 
In the example the histogram clearly shows the data is unimodal with the modal class being 
35-37 and the mode as 36. In the rare case that all the data only happened once, then the 
mode may not exist. 
 
Median: The median of a sample is the value that evenly splits the number of observations 
into a lower half of smaller observations and an upper half of larger measurements. Hence 
determination of the median requires ranking of all the sample values (see rewritten table 
below). In the case of an even number of observations the median is the arithmetic mean of 
the two middle numbers. In the example the two middle numbers are both 36 (shaded dark 
grey on table below) so the median is 36. 
 
Number Schmidt 

hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

Number Schmidt 
hammer 
hardness 

8 29 22 33 26 36 4 38 45 40 
7 30 24 34 33 36 29 38 1 41 
5 31 27 34 35 36 34 38 28 41 

19 31 30 34 37 36 38 38 48 41 
10 32 31 34 43 36 42 38 49 42 
13 32 16 35 47 36 46 38 11 43 
41 32 40 35 6 37 21 39 23 43 
12 33 14 36 32 37 44 39 3 44 
17 33 18 36 39 37 9 40 15 46 
20 33 25 36 2 38 36 40 50 49 
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Measures of dispersion 

Measures of dispersion give an idea of the spread of the data. 

Extreme values: The extreme values are the maximum and minimum values in the sample. 
In the example the minimum value is 29 and the maximum value is 49, hence the range is 
49 – 29 = 20. 

Quartiles (including the interquartile range): The idea of the median splitting the ranked 
sample into two halves can be generalized to any number of partitions with equal numbers of 
observations. The partition boundaries are called quantiles or fractiles. The names for the 
most common quantiles are: 
• Median, for 2 partitions 
• Quartiles, for 4 partitions 
• Deciles, for 10 partitions 
• Percentiles, for 100 partitions 
The number of boundaries is always one less than the number of partitions. 
 
Quartiles: Three quartiles divide a list of numbers into four equal parts. The middle quartile 
(the median) has already been discussed. The lower and upper quartiles are calculated by 
dividing the both halves of data either side of the median into a lower quarter of smaller 
observations and an upper quarter of larger measurements. In the case of an even number 
of observations calculate the mean of the two middle numbers. In the example the lower 
quartile is 34 and the upper quartile is 39 (shaded light grey on table above). 

Interquartile range (IQR): The interquartile range is the difference between the upper and 
lower quartiles thereby giving a measure of the central spread of the data. A practical rule of 
thumb is to regard any value deviating more than 1.5 times the IQR from the median as a 
mild outlier and any value deviating more than 3 times the IQR from the median as an 
extreme outlier. Outliers are values so markedly different from the rest of the sample that 
they raise the suspicion that they may be from a different population (e.g. value was 
measured in a nearby conglomerate horizon) or may be in error (e.g. incorrect application of 
the Schmidt hammer) but it is notoriously difficult to show that the values are anomalous.  

In the example above the IQR is 39 – 34 = 5. The mild outlier boundaries are 

= median ± 1.5 IQR = 36 ± 1.5(5) = 29 and 44.  

Therefore only two values (sample 15 and 50) may be considered as mild outliers with 
sample number 50 being the most extreme. 

In comparison to variance/standard deviation (discussed below) the IQR is a more robust 
method for analysing the central spread of the measurements but, unlike variance/standard 
deviation, is insensitive to the lower and upper tails. Generally speaking if the median is 
thought to be the best way in which to describe the data average then the IQR is used as the 
measure of spread. Conversely if the mean is believed to be the best way in which to 
describe the data average then the standard deviation is utilised. 

All the statistics calculated above can be graphically displayed on a box and whisker plot 
although variations on the specifics displayed abound. 



 

18 
 

Variance: The sample variance, s2, is another method used to calculate how varied or 
spread out from the mean a sample is. Sample variance is mathematically defined as the 
average of the squared differences from the mean. To calculate variance, it is useful to 
break the calculation down into steps: 
Step 1: Calculate the mean (previously discussed). 
Step 2: Subtract the mean from each of the values and square the result. 
Step 3: Divide by n – 1 

 

In mathematical notation this is written as: 

( )
1

2
2

−
−Σ

=
n

xx
s i

 

where s2 is the sample variance 

xi is the individual value 

x  is the sample mean  

n is the sample size 

An incomplete summary table shows how this data could be laid out: 

Value (xi) Mean ( x )* (xi – x ) (xi – x )2 
41 36.88 4.12 16.97 
38 36.88 1.12 1.254 
44 36.88 7.12 50.69 
38 36.88 1.12 1.254 
31 36.88 − 5.88 34.57 
…. …. …. …. 
   ( ) 837.3

2
=−Σ xxi  

   ( )
17

1

2

=
−
−Σ

n
xxi  

 

* Note value used with 4 significant figures to avoid rounding errors. 
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The sample variance for the exemplar data is therefore 17. While this value is useful in a 
mathematical sense, the principal use of this calculation is to allow standard deviation to be 
determined. 

Standard deviation: The standard deviation is the positive square root of the variance.  

In mathematical notation: 

( )
1−

−Σ
=

n
xxs

2

 

For the exemplar data the value of standard deviation, s = 17.09 = 4 Schmidt hammer 
hardness units. 

Standard deviation gives us a measure of how clustered the data are around the mean. A 
smaller value of standard deviation indicates that the data is tightly clustered around the 
mean and vice-versa (see below). 

 

Observing the shape of these two curves shows that they are symmetrical about the centre. 
This type of curve is called a bell curve and shows that the data is normally distributed about 
the centre – the mean. In such a normal distribution the mean, mode and median are equal 
and exactly half the values are to the left of the centre and half the values are to the right. In 
the standard normal model about 68% of the data falls within one standard deviation of the 
mean, about 95% of the data falls within two standard deviations of the mean and just over 
99% of the data falls within three standard deviations of the mean. 
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Therefore if the 50 Schmidt hammer hardness values obtained at Alderley Edge fit the 
standard normal model then we could say that 68% of the data lies between 37 ± 4, 95% of 
the data lies between 37 ± 8 and just over 99% of the data lies between 37 ± 12.  

Although many large populations follow the standard normal model many samples of data do 
not. A quick comparison of the bell curve to the histogram produced earlier shows that this is 
the case with the collected Schmidt hammer hardness data in that the curve is not 
symmetrical and indeed the mean, mode and median are not coincident. A measure of how 
a sample set differs from the standard normal model can be made by calculating the 
coefficient of skewness.  
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Measures of shape 

Skewness: is a term used to describe the degree of asymmetry of a set of data from the 
normal distribution. Whether a sample is symmetrical or skewed to the left (negative skew) 
or to the right (positive skew) is clearly shown in a histogram. 

   
A negative skew. The tail of 
the data extends to the left 
(in a negative direction). In 
such a case the median is 
usually larger than the mean.  

No skew. Data is perfectly 
symmetrical about the 
mean. 

A positive skew. The tail of 
the data extends to the right 
(in a positive direction). In 
such a case the mean is 
usually larger than the 
median. 

 

There are many different formulae for calculating skewness. A simple and convenient 
formula is: 

( )
deviation standard
medianmean 3skew −

=  

For the Schmidt hammer data the coefficient of skew is 
( ) 0.64

4.13
3636.883

+=
−

=  

This positive skew can be seen by the obvious tail to the right in the data displayed on both 
the bar chart and histogram.  
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Example: statistical analysis of a sieved sediment 

Sieving of unconsolidated sediment is a common practical exercise at A level. Presented 
below are the results for a sieved modern beach sand. These data illustrate the usefulness 
of constructing a percentage cumulative frequency graph.  

Here the percentage cumulative mass is calculated by adding the percentage mass values 
as you go along. It is conventional (as the table shows) to add the coarsest sediment mass 
to subsequent finer class intervals to give the ‘running total’. This is important to note 
because when plotting a percentage cumulative frequency graph (shown below) the points 
are plotted at the upper class boundary because the table gives the successive totals that 
are less than this upper class boundary. 

grain size (mm) grain size (ø) mass (g) mass (%) cumulative 
mass (%) 

4≤mm<8 −2≥ ø>−3 0.0 0.0 0.0 
2≤mm<4 −1≥ ø>−2 0.3 0.3 0.3 
1≤mm<2 0≥ ø>−1 7.0 7.8 8.1 

0.5≤mm<1 1≥ ø>0 78.5 87.1 95.2 
0.25≤mm<0.5 2≥ ø>1 4.0 4.5 99.7 

0.125≤mm<0.25 3≥ ø>2 0.2 0.2 99.9 
0.063≤mm<0.125 4≥ ø>3 0.1 0.1 100.0 
0.032≤mm<0.063 5≥ ø>4 0.0 0.0 100.0 
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In the percentage cumulative frequency diagram above the points are joined by a straight 
line. Although there is no steadfast rule for whether this line (ogive) should be straight or 
curved in a percentage frequency diagram, the advantage of a straight line ensures greater 
consistency in reading extrapolated grain size values from stipulated percentile values when 
calculating the statistics of the grain size distribution as demonstrated below. 

percentile grain size (ø) 
5 −0.40 
16 0.10 
25 0.20 
50 0.50 
75 0.75 
84 0.85 
95 1.00 

 

Mode: the modal class is evident from the table –  0.5 ≤ mm < 1, i.e. the sediment is a coarse 
sand. 

Median: the median is the phi value at the 50 percentile (ø50), i.e. ø50 = 0.50.  

To convert this into mm, 2−0.50 = 0.71 mm. 

 

Mean: the graphic mean is calculated from the formula, 

ø
øøø

x 0.48
3

0.200.500.75
3

2575 =
++

=
++

= 50  

To convert this into mm, 2-0.48 = 0.72 mm. 

Skewness: It is readily evident from the above values that the three averages are very close 
to each other and therefore it would be expected that this sediment will not be significantly 
skewed. The grain sizes of the sediment would therefore approximate to a normal 
distribution. This can be confirmed by calculating the graphic skewness of the sediment 
using the formula: 

 

( )
( )

( )
( )

( )
( )

( )( )
( )( ) 0.180.640.46

0.401.00
0.400.50

0.100.85
0.500.85skew −=−=

−−
−−

−
−
−

=
−
−

−
−
−

=
595

550

1684

5084

øø
øø

øø
øø

 

 

Using the table of descriptive terms for skewness shown below, then the sediment can be 
described as (slightly) negatively skewed i.e. there is a slightly coarse tail to the grain size 
distribution. 

skewness descriptor graphical skewness value 
very negatively skewed −1.0 to −0.3 

negatively skewed −0.3 to −0.1 
symmetrical −0.1 to 0.1 

positively skewed 0.1 to 0.3 
very positively skewed 0.3 to 1.0 
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Standard deviation: calculation of the standard deviation of the grain size distribution is 
used to calculate the sorting of the sediment using the following formula, 

0.38
2

0.100.85
2

=
−

=
−

= 1684 øø
x  

 

Using the table of descriptive terms for sorting shown below, then the sediment can also be 
described as well sorted. 
 

sorting descriptor graphical sorting value 
very well sorted <0.35 

well sorted 0.35 - 0.50 
moderately well sorted 0.50 - 0.70 

moderately sorted 0.70 - 1.00 
poorly sorted 1.00 - 2.00 

very poorly sorted 2.00 - 4.00 
extremely poorly sorted >4.00 
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Bivariate data analysis 

A dataset that contains two variables is termed bivariate data. In Geology there is often an 
interest in comparing two measurements made for the same site (e.g. in an outcrop – 
fracture spacing and permeability) or same object (e.g. in a hand specimen – porosity and 
density). Among the many commonly used graphical techniques used to analyse and display 
bivariate data perhaps the most frequently utilised is the scatter diagram. 

Scatter diagrams 

Scatter diagrams are used to show graphically the relationship between two variables. Two 
axes are drawn in the usual way with the variable that is believed to cause the change in the 
other (the so-called independent variable) plotted on the x-axis; the dependent variable is 
therefore plotted on the y-axis.  

By studying the resulting pattern of the pairs of data on the scatter diagram the degree of 
correlation may be evident. Correlation gives an idea of how strong the linear relationship 
between the bivariate data is (e.g. for the curved data no correlation exists). Commonly 
encountered patterns include: 

  

 

It is very common for graphs of the relationship between pairs of geological variables to be 
well approximated by straight lines. However, the fit is never perfect. Despite this fact it may 
be possible to draw in by eye, a best fit straight line, which should appear to pass as close 
as possible to all the points plotted (with care taken to exclude obvious anomalies). The best 
fit straight line does not need to pass through the origin but it is good practice that the line of 
best fit should pass through the double mean point ( x , y ) i.e. the point that is the mean of x 
values: mean of y values.  A generic example of a best fit straight line is shown on the next 
page.  
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Once the best fit straight line is drawn in by eye it is possible to obtain predictions of 
unknown values. This may be undertaken directly from the graph or more accurately by 
obtaining the equation of the straight line. The general equation of a straight line is: 

cmxy +=  

where m is the gradient of the line and c is the y-axis intercept.  

In the example above the equation of the best fit straight line is y = 1.6x +17, hence if a value 
of y at x = 42 is required then y = (1.6 x 42) + 17 = 84. Care must be exercised in the 
prediction of values outside of the graph area in that there may be a degree of uncertainty 
whether this mathematical relationship would still hold true. 

The scatter diagram below represents a set of fault rupture length (independent variable) 
and magnitude (dependent variable) data for twelve globally-distributed strike-slip fault 
earthquakes.  

 

Immediate inspection of the scatter graph indicates that at low values of fault rupture length 
the degree of correlation worsens and this may suggest a non-linear relationship or the 
influence of another variable.  
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A scatter diagram of earthquake magnitude versus 
fault rupture length for 12 strike-slip faults. 
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A rate (r) is calculated by determining the amount of change (for example, distance travelled) 
and the time elapsed. To do this, we need two values for time (t1 and t2) and two 
corresponding values for the condition that is changing (d1 and d2). So for example: 

 
 
 
where d2 is the distance travelled at time t2 and d1 is the distance travelled at time t1. The 
Greek letter Δ, “delta,” means change, and you may often see it used in rate calculation 
problems. Written using delta, our example rate equation becomes: 

t
dr
∆
∆

=
 

This simple linear algebraic equation can be applied to calculate the rate (speed) of plate 
motion. In 2006, geologists working with the Plate Boundary Observatory Network began 
closely tracking the location of a GPS station west of the San Andreas Fault in California. 
The station, which is located on the Pacific Plate, is moving slowly northwest past the North 
America Plate. In May 2007, researchers recorded the station 33 mm northwest of its original 
position. In May 2012, they recorded it 195 mm northwest of its original position. To calculate 
the rate of motion of the station (and thus the Pacific Plate) between 2007 and 2012 firstly 
the total displacement (Δx) needs to be determined, 

12 xxx −=∆  

mm 16233195 =−=∆x  

Since the time period of interest is between 2007 and 2012, we know that Δt = 5.00 years. 
Therefore: 

t
xr
∆
∆

=  

 

mm/year 32.4
5.00
162

==r  

So between 2007 and 2012 the Pacific Plate has a rate of motion (speed) of 32.4 mm/year or 
a velocity of 32.4 mm/year to the northwest. 

If the plate continues to move at the same rate in the same direction, then it is possible to 
calculate how far it will be from its original (May 2006) position. Therefore, by May of 2050, 
rearranging the equation: 

t
xr
∆
∆

=  

to make Δx the subject of the equation so that: 

trx ∆×=∆  
then, Δx = 32.4 × (2050 – 2006) = 32.4 × 44.00 = 1 430 mm 

Therefore by May 2050, the station will have moved 1.43 m if the speed and direction 
remained constant. 

12

12

tt
ddr

−
−

=
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Multivariate data analysis 

Triangular plots 

Triangular (ternary) diagrams have three axes instead of two and are useful for visualising 
the relative proportions of three components in a sample. Examples in geology of triangular 
plots include quartz-feldspar-rock fragments diagrams and sand-silt-clay composition 
diagrams in the study of sedimentary rocks. 

 

With triangular graphs each axis is divided into 100 – representing percentages.  
From each apex lines are drawn at an angle of 60o to carry the values across the graph.  
The data must be in the form of three percentage values and these values must add up to 
100.  
 
The examples above show how the relative proportions of silt, clay and sand vary with 
respect to each apex of the triangle. Examples are shown below of four samples (1, 2, 3 and 
4) with different proportions of silt, clay and sand to illustrate how these values would plot on 
the triangular graph. 

 

Every effort is currently being made to trace the copyright holders of materials and 
appropriate acknowledgements will be added. In the meantime, if you have any queries 
regarding rights please contact sian.williams@wjec.co.uk 


